Molecular Design for In‐Situ Polymerized Solid Polymer Electrolytes Enabling Stable Cycling of Lithium Metal Batteries

Author:

Peng Hao1,Long Tairen1,Peng Jun1,Chen Hui1,Ji Lifei1,Sun Hui2ORCID,Huang Ling1ORCID,Sun Shi‐Gang1ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

2. State Key Laboratory of Heavy Oil Processing Beijing Key Laboratory of Biogas Upgrading Utilization College of New Energy and Materials China University of Petroleum‐Beijing Beijing 102249 China

Abstract

AbstractThe practical application of polymer electrolytes is hindered due to the low ionic conductivity and the interfacial instability between the electrodes. Herein, a strategy for designing solid polymer electrolytes is developed that facilitates the rapid lithium‐ion migration through weak coordination with polymer chain segments, as well as the fast ion channel transport of oligomers. Moreover, the in situ‐produced solid polymer electrolyte (PFVS) can form stable LiF‐rich interfaces with both the lithium metal anode and different cathodes. When the PFVS is applied in Li‐metal batteries, excellent properties are achieved at room temperature. A Li||Li symmetric cell can be stably cycled for 4000 h at a current density of 0.1 mA cm−1, a Li||LiFePO4 full cell can maintain capacity retention as high as still 94.4% after 600 cycles at 1 C, and a Li||NCM811 full cell can retain 80% capacity after 180 cycles at 1 C. A 2.6 Ah Graphite|PFVS|NCM90 pouch cell is made for demonstrating the practical application potential, and it can be also stably cycled. The developed strategy provides a promising path for designing solid polymer electrolytes that can effectively extend the lifespan of Li metal batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3