Spontaneous Reaction of Electrocatalyst Resulted in a NH3 Faraday Efficiency of More than 100% in Electrochemical Nitrate Reduction

Author:

Yu Wanqiang1,Chen Lili1,Tan Hua1,Huang Man1,Yu Jiayuan1,Wang Yujie1,Wang Jingang1,Liu Hong12,Zhou Weijia1ORCID

Affiliation:

1. Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P. R. China

2. State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China

Abstract

AbstractAmmonia is emerging as a liquefied and renewable‐energy carrier of global interest in the future. The electrochemical reduction of nitrate is widely acknowledged as an alternative to the traditional Haber–Bosch process for ammonia production. However, it is observed that certain catalysts can undergo spontaneous oxidation–reduction reactions with nitrate to some extent, leading to the calculated ammonia Faradaic efficiency exceeding 100%. However, there is a lack of accurate experimental validation as well as effective solutions. To address these problems, it is verified that the spontaneous reaction between the catalyst and nitrate impacts on the calculation of electrocatalytic nitrate reduction performance. Meanwhile, an updated and optimized experimental strategy is proposed to address the interference caused by the spontaneous reaction. This work will significantly contribute to more accurate and reliable electrocatalytic nitrate reduction research.

Funder

Taishan Scholar Project of Shandong Province

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3