Perspectives on Li Dendrite Penetration in Li7La3Zr2O12‐Based Solid‐State Electrolytes and Batteries: Materials, Interfaces, and Charge Transfer

Author:

Biao Jie1,Bai Chen1,Ma Jiabin12,Liu Ming1,Kang Feiyu12,Cao Yidan12,He Yan‐Bing1ORCID

Affiliation:

1. Shenzhen Geim Graphene Center Institute of Materials Research (IMR) Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China

2. Tsinghua‐Berkeley Shenzhen Institute (TBSI) Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China

Abstract

AbstractGarnet‐type Li7La3Zr2O12 (LLZO) solid‐state electrolytes have gained significant attention as one of the most promising electrolyte candidates for high‐energy‐density energy storage devices due to their superior stability and high ionic conductivity. However, the problem of lithium (Li) dendrite penetration into LLZO hinders the practical application of LLZO in solid‐state Li metal batteries (SSLMBs). Multidisciplinary evaluations are carried out to understand the mechanism of dendrite penetration. Herein, the formation and evolution of different types of Li dendrites within LLZO are reviewed. The Li dendrite penetration process is addressed from the perspectives of material design, Li/LLZO interfacial adaptability, and the interfacial charge transfer process. On this basis, recent efforts and solutions to inhibiting the penetration of Li dendrites in LLZO, including stabilizing LLZO phase and densification techniques, interfacial modifications, and grain boundary manipulations, are summarized. It is expected that the in‐depth understanding of the Li dendrite penetration and corresponding solutions will provide a systemic guideline toward the development of LLZO‐based solid‐state electrolytes and the commercialization of ultra‐stable SSLMBs.

Funder

National Natural Science Foundation of China

Guangdong Provincial Department of Science and Technology

Tsinghua Shenzhen International Graduate School

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3