Affiliation:
1. Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL) North Carolina State University Raleigh NC 27695 USA
2. Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
3. Department of Chemistry University of Kentucky 505 Rose St. Lexington KY 40506‐0055 USA
Abstract
AbstractDiscrepancies in reported values of exciton binding energy (Eb) for organic semiconductors (OSs) necessitate a comprehensive study. Traditionally, Eb is defined as the difference between the transport gap (Et) and the optical gap (Eopt). Here, the Eb values of PBnDT‐TAZ polymer variants are determined using two commonly employed methods: a combination of ultraviolet photoemission spectroscopy and low‐energy inverse photoemission spectroscopy (UPS‐LEIPS) and solid‐state cyclic voltammetry (CV). Eb values obtained by UPS‐LEIPS show low dispersion and no clear correlation with the polymer structure and thedielectric properties. In contrast, CV reveals a larger dispersion (200 meV‐1 eV) and an apparent qualitative Eb‐molecular structure correlation, as the lowest Eb values are observed for oligo‐ethylene glycol side chains. This discrepancy is discussed by examining the implications of the traditional definition of Eb. Additionally, the impact of both intrinsic and extrinsic factors contributing to the derived experimental values of Et is discussed. The differences in intrinsic and extrinsic factors highlight the context‐dependent nature of measurement when drawing global conclusions. Notably, the observed Eb trend derived from CV is not intrinsic to the pure materials but likely linked to electrolyte swelling and associated changes in dielectric environment, suggesting that high‐efficiency single‐material organic photovoltaics with low Eb may be possible via high dielectric materials.
Funder
U.S. Department of Energy
National Science Foundation
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献