Affiliation:
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources School of New Energy North China Electric Power University Beijing 102206 China
Abstract
AbstractMetal‐halide perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology. Fabricating PSCs in ambient air can accelerate their low‐cost commercialization, since it can remove the reliance on atmosphere‐controlled equipment. However, the power conversion efficiency (PCE) of air‐fabricated PSCs still lags behind those fabricated in glovebox. Here, based on a technology to fabricate high‐quality perovskite film in ambient air, a compatible optimization is performed on electron transport layer (ETL) to further enhance the photovoltaic performance of PSCs. A soft‐templated deposition strategy is proposed that utilizes tetrasodium glutamate diacetate (GLDA) to finely regulate the chemical bath deposition process, leading to an ideal SnO2 ETL with no additive residual. Adopting this feature of no residual, a molecular bridge using β‐guanidinopropionic acid (βA) is constructed at the buried interface (SnO2/perovskite), which effectively enhances the electron extraction and decreases electron losses. The resulting PSCs (0.08 cm2) achieve an impressive PCE of 25.74% (certificated 25.43%), which is the highest among the air‐fabricated PSCs reported to date. A PCE of 24.61% in 1 cm2‐PSCs is also obtained, exhibiting the scalable potential of the technology. In addition, the excellent operational stability of these PSCs is also demonstrated.
Funder
Fundamental Research Funds for the Central Universities
Double First Class University Plan
Beijing Nova Program
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Key Technology Research and Development Program of Shandong Province
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献