Solvation–Reduction Coupling in Ca2+ Electroactivity in Glyme‐Based Electrolytes: A First Principles Study

Author:

Nguyen Long Hoang Bao12ORCID,Filhol Jean‐Sébastien12ORCID

Affiliation:

1. ICGM, Univ Montpellier, CNRS ENSCM Montpellier 34095 France

2. RS2E French Network on Electrochemical Energy Storage Amiens FR5439 France

Abstract

AbstractThe electrochemical activity of solvated Ca2+ in glyme‐based electrolytes is investigated using grand canonical density functional theory approach and Fukui functions. The obtained results reveal that the length of glyme molecules has little effect on the reduction potentials, but has significant impacts on the effective electron transfer process. In short chain glymes, the transferred electron is located on a Ca2+ center and the organic part of the solvation sphere, leading to a direct Ca2+ reduction and a partial degradation of the glyme molecules. As the glyme's length increases, the reduction process turns into the formation of solvated electrons rather than Ca2+ reduction, unless a partial desolvation occurs. Consequently, an effective Ca2+ reduction in long chain glyme‐based electrolytes is controlled by a (partial) desolvation of the solvation sphere. These results can be used as guiding information to design new electrolytes having the Ca2+ reduction potential in an accessible voltage range together with an effective Ca2+ reduction process. The methodology developed in this study can be universally applied to investigate the thermodynamic and kinetic properties of other battery systems using metal anodes, which might lead to a paradigm shift in the design of prospective electrolytes for future battery technologies.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3