Molecular‐Layer‐Deposited Zincone Films Induce the Formation of LiF‐Rich Interphase for Lithium Metal Anodes

Author:

Chang Shaozhong12ORCID,Fang Jiabin1,Liu Kai3,Shen Zihan4,Zhu Lin1,Jin Xin1,Zhang Xuejin3,Hu Chaoquan45,Zhang Huigang124ORCID,Li Ai‐dong1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences Nanjing University Jiangsu 210093 P. R. China

2. Department of Chemical Engineering Northwest University Xi'an 710069 P. R. China

3. National Laboratory of Solid State Microstructures Key Laboratory of Intelligent Optical Sensing and Manipulation Jiangsu Key Laboratory of Artificial Functional Materials Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences and School of Physics Nanjing University Nanjing 210093 P. R. China

4. Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China

5. Zhongke Nanjing Institute of Green Manufacturing Industry Nanjing 211135 P. R. China

Abstract

AbstractLithium metal anodes suffer from low Coulombic efficiency and dendritic growth owing to an unstable solid electrolyte interphase (SEI), which limit the practical applications of lithium metal anodes. Here, zincone (ZnHQ) is conformally fabricated on 3D copper nanowires (CuNWs) via a molecular layer deposition (MLD) technology. Upon polarization, the terminal oxygen of ZnHQ serves as a strong nucleophilic agent to attack Li bis(trifluoromethanesulfonyl)imide, yielding a LiF‐rich SEI. This SEI facilitates the Li transport, shuts off the electron conduction, and inhibits the growth of lithium dendrites. In addition, the zinc atoms of ZnHQ induce favorable Li deposition owing to their lithiophilicity. These advantages enabled by MLD make the ZnHQ‐modified CuNW (CuNW@ZnHQ) an ideal Li metal anode, which demonstrates excellent cyclability. A symmetrical cell of CuNW@ZnHQ shows high cycling stability for more than 7000 h at the current density of 1 mA cm−2. When pairing with a Ni/Co/Mn ternary oxide cathode (NCM523), the resultant CuNW@ZnHQ||NCM full cell is cycled for 1000 cycles with a 90% capacity retention at an areal capacity of 3.2 mAh cm−2. The MLD technology brings new opportunities for next‐generation high‐energy Li metal batteries.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Government of Jiangsu Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3