Striking a Balance: Exploring Optimal Functionalities and Composition of Highly Adhesive and Dispersing Binders for High‐Nickel Cathodes in Lithium‐Ion Batteries

Author:

Jeong Daun1,Kwon Da‐Sol12,Kim Hee Joong3,Shim Jimin14ORCID

Affiliation:

1. Energy Storage Research Center Korea Institute of Science and Technology (KIST) 14 Gil 5 Hwarang‐ro, Seongbuk‐gu Seoul 02792 Republic of Korea

2. Department of Chemical and Biological Engineering Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea

3. Department of Polymer Science and Engineering & Program in Environmental and Polymer Engineering Inha University 100 Inha‐ro, Michuhol‐gu Incheon 22212 Republic of Korea

4. Department of Chemistry Education Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea

Abstract

AbstractNickel‐rich layered oxide, LiNixCoyMnzO2 (NCM, x > 0.8), has emerged as a promising cathode material for lithium‐ion batteries due to its high specific capacity and energy density. However, there remains a challenge regarding NCM degradation during cycling, associated with interfacial side reactions and microcrack formation. Herein, a functional poly(norbornene‐co‐norbornene dicarboxylic acid‐co‐heptafluorobutyl norbornene imide) (PNCI)‐based binder system is introduced, with controlled functionalities and monomer compositions, to preserve the structural integrity of NCM. The PNCI binder system incorporates three different norbornene‐derived monomers with distinct functionalities, allowing for multifunctionality, including electro‐chemo‐mechanical stability, strong adhesion, and dispersibility. By systematically adjusting the molar composition of the PNCI binders, the overall binder characteristics are fine‐tuned, optimizing the adhesion and dispersion of electrode components. The optimized PNCI binder, with desired adhesion strength, surface energy, and polarity, plays a crucial role in facilitating the formation of a uniform electrode structure with a high areal mass loading of NCM, ensuring long‐term cycling stability. This study highlights the significance of striking a balance between functionalities and composition in binder systems to achieve high‐performance NCM cathodes.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Seoul National University

Korea Institute of Science and Technology

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3