Component Fluctuation Modulated Gelation Effect Enable Temperature Adaptability in Zinc‐Ion Batteries

Author:

Ji Shanguo12,Luo Hao3,Qin Shuo12,Zhang Xinyue12,Hu Yuanyuan12,Zhang Weiwei4,Sun Jianchao4,Xu Jing12,Xie Haijiao5,Yan Zhenhua6ORCID,Yang Kai12ORCID

Affiliation:

1. College of Chemistry and Material Science Shandong Agricultural University Tai'an Shandong 271018 P. R. China

2. Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs Tai'an Shandong 271018 P. R. China

3. School of Materials Science and Engineering Xiamen University of Technology Xiamen 361024 P. R. China

4. School of Environment and Material Engineering Yantai University Yantai Shandong 264005 P. R. China

5. Hangzhou Yanqu Information Technology Co., Ltd. Hangzhou 310003 P. R. China

6. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 P. R. China

Abstract

AbstractThe active H2O and slow ion kinetics behavior deteriorate the performance of aqueous zinc‐ion batteries at a wide temperature range, even in hydrogel electrolyte. Herein, a component fluctuation modulated gelation effect is applied to optimize Zn2+ solvation structure, realizing a balance between H2O activity limitation and Zn2+ kinetics retention. The as‐prepared hydrogel electrolyte via in situ copolymerization of [2‐(methacryloyloxy)ethyl] dimethyl‐(3‐sulfopropyl) and acrylamide in the electrolyte salt matrix facilitates stable overall performance at both normal and low temperatures. Theoretical calculations and experimental results attest that polymer functional groups exhibit a higher efficacy in substituting bound water in the Zn2+ solvated shell with the polymer content increasement, thereby alleviating water‐associated parasitic reactions. Furthermore, the hydrogel with abundant zwitterionic groups not only interacts with H2O to limit hydrolysis, but also constructs separated ionic migration channels to promote uniform and fast Zn2+ transport. As a result, the hydrogel electrolytes promote stable Zn2+ plating/stripping behaviors over 1050 h and 3000 h at 25 and −20 °C, respectively. The full batteries achieve a capacity retention of 98.8% over 2000 cycles at 25 °C and stably cycle for 600 times at −20 °C. This work yields novel insights into the development and design of hydrogel electrolytes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3