Hierarchical Porous N‐doped Carbon Encapsulated Fluorine‐free MXene with Tunable Coordination Chemistry by One‐pot Etching Strategy for Lithium–Sulfur Batteries

Author:

Zhang Xinlu1ORCID,Ni Zhiwei1,Bai Xuexiu1,Shen Hengtao1,Wang Zhengran1,Wei Chuanliang2,Tian Kangdong1,Xi Baojuan2,Xiong Shenglin2,Feng Jinkui1ORCID

Affiliation:

1. Key Laboratory for Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education) Research Center for Carbon Nanomaterials School of Materials Science and Engineering Shandong University Jinan 250061 P. R. China

2. School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China

Abstract

AbstractContinuous and considerable exploration of two–dimensional transition metal carbides and nitrides (MXenes)toward interlayer spacing expansion, surface termination modification and composition architecture construction has aroused significant interest in energy storage fields. Nevertheless, their employment remains severely impeded by a fundamental lack of comprehension of the coordination chemistry of MXenes. Herein, hierarchical porous N‐doped carbon encapsulated fluorine‐free Ti3C2Tx with tunable coordination chemistry is fabricated by a novel one‐pot etching strategy. The Ti coordinated with N manipulated by phase reconstruction is identified by high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray photoelectron spectroscopy. Moreover, hierarchical porous nitrogen‐doped carbons (HPNC) are distinctly observed that result in a multifold increase in material surface area derived from a substantial increment of micro‐ and mesoporosity. The structural synergistic effect of Ti coordinated with N, and HPNC heighten binding energy and reduce energy barriers that accelerate redox kinetics, and boosts physical immobilization of lithium polysulfides. The aforementioned MXenes modified separators endow lithium–sulfur batteries with a reversible capacity of 889.5 mA h g−1 with capacity retention of 79.5% after 100 cycles at 0.5 A g−1. Overall, this work affords a novel and universal etching strategy in terms of directly synthesizing fluoride‐free MXene with tunable coordination chemistry toward exploring the correlation between structural and electrochemical properties.

Funder

National Natural Science Foundation of China

Shenzhen Fundamental Research Program

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3