Breaking Consecutive Hydrogen‐Bond Network Toward High‐Rate Hydrous Organic Zinc Batteries

Author:

Cui Changjun123,Han Daliang123,Lu Haotian145,Li Zhiguo123,Zhang Kangyu6,Zhang Bo123,Guo Xiaoxia123,Sun Rui123,Ye Xiaolin123,Gao Jiachen123,Liu Yingxin123,Guo Yong123,Meng Rongwei145,Wei Chunguang7,Yin Lichang6,Kang Feiyu8,Weng Zhe123,Yang Quan‐Hong1235ORCID

Affiliation:

1. Nanoyang Group Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage School of Chemical Engineering and Technology and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China

2. National Industry‐Education Integration Platform of Energy Storage Tianjin University Tianjin 300072 China

3. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China

4. Department of Chemistry National University of Singapore Singapore 117543 Singapore

5. Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China

6. Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 China

7. Shenzhen Cubic Science Co., Ltd. Shenzhen 518055 China

8. Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

Abstract

AbstractZinc batteries hold great potential for stationary energy storage but suffer from severe dendrite growth, corrosion, and hydrogen evolution troubles in aqueous electrolytes. Despite the impressive efficacy of non‐flammable hydrous organic electrolytes in addressing these problems, the insufficient ionic conductivity hinders the rate capability and practicability of hydrous organic Zn batteries. Here, methanol is proposed as a co‐solvent for ethylene glycol (EG)‐based hydrous organic electrolytes, where its methyl terminal group can interrupt the continuous intermolecular hydrogen bond network among EG. The new hydrous organic electrolyte exhibits a doubled ionic conductivity without sacrificing the exceptional nonflammability. As a result, the Zn anode exhibits a long‐term cycling stability over 4000 h at 0.5 mA cm−2, a high Coulombic efficiency of 99.5%, high‐rate capability up to 20 mA cm‒2, and impressive low‐temperature tolerance of ‒60 °C. The Zn||V2O5 pouch cell with the electrolyte is capable of operating under extreme operation conditions involving needling, package breakage, and even exposure to fire. This work paves an avenue toward electrolyte design for high‐rate practical Zn batteries and beyond.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Tianjin City

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3