Platinum/Tantalum Carbide Core–Shell Nanoparticles with Sub‐Monolayer Shells for Methanol and Oxygen Electrocatalysis

Author:

Wang Zhenshu1,Kang Jin Soo123ORCID,Göhl Daniel4,Paciok Paul5,Gonçalves Danelle S.6,Lim Hyung‐Kyu7,Zanchet Daniela6,Heggen Marc5,Shao‐Horn Yang28,Ledendecker Marc49,Román‐Leshkov Yuriy1ORCID

Affiliation:

1. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

2. Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge MA 02139 USA

3. Department of Energy Systems Engineering Department of Energy Resources Engineering & Research Institute of Energy and Resources Seoul National University Seoul 08826 Republic of Korea

4. Department of Chemistry Ernst‐Berl‐Institut für Technische und Makromolekulare Chemie Technical University of Darmstadt 64287 Darmstadt Germany

5. Ernst Ruska‐Center for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute Forschungszentrum Jülich GmbH 52425 Jülich Germany

6. Institute of Chemistry University of Campinas SP 13083‐970 Brazil

7. Division of Chemical Engineering and Bioengineering Kangwon National University Chuncheon Gangwon‐do 24341 Republic of Korea

8. Department of Mechanical Engineering & Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

9. Department of Sustainable Energy Materials Technical University of Munich, Campus Straubing for Biotechnology and Sustainability 94315 Straubing Germany

Abstract

AbstractCore–shell architectures provide great opportunities to improve catalytic activity, but achieving nanoparticle stability under electrochemical cycling remains challenging. Herein, core–shell nanoparticles comprising atomically thin Pt shells over earth‐abundant TaC cores are synthesized and used as highly durable electrocatalysts for the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) needed to drive direct methanol fuel cells (DMFCs). Characterization data show that a thin oxidic passivation layer protects the TaC core from undergoing dissolution in the fuel cell‐relevant potential range, enabling the use of partially covered Pt/TaC core–shell nanoparticles for MOR and ORR with high stability and enhanced catalytic performance. Specifically, at the anode the surface‐oxidized TaC further enhances MOR activity compared to conventional Pt nanoparticles. At the cathode, the Pt/TaC catalyst feature increases tolerance to methanol crossover. These results show unique synergistic advantages of the core–shell particles and open opportunities to tailor catalytic properties for electrocatalytic reactions.

Funder

U.S. Department of Energy

Office of Science

Brookhaven National Laboratory

Bundesministerium für Bildung und Forschung

Eni

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3