Atomic Sn Encapsulation with Visualizing Mitigated Active Zinc Loss toward Anode‐Lean Zinc Metal Battery

Author:

Zhang Xinren1,Qu Changzhen1,Zhang Xiuhai1,Peng Xu1,Qiu Yuqian1,Su Yanxia1,Zeng Jianrong23,Liu Zhe1,Liu Xingrui1,Qi Weihong1,Wang Hongqiang1,Xu Fei1ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China

2. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China

3. Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China

Abstract

AbstractAqueous Zn ion batteries promise high safety and sustainability for large‐scale energy storage but are severely impeded by catastrophic dendrite growth and parasitic reactions of Zn anode with irreversible Zn loss. Constructing ultrafine zincophilic seeding sites in hosting interphases has emerged as a viable strategy for reversible plating/stripping. Nevertheless, systematic unravelling of downsized nucleation sites and spatial distribution along with manifesting active Zn loss mechanism, remains scant yet imperative. Herein the atomic Sn encapsulated in hollow carbon spheres is proposed (At‐Sn@HCN) as interphase combined with in situ optical microscope for visualizing the active Zn loss. The atomic‐level Sn serves as robust nucleation sites to minimize nucleation barrier while the hollow architecture homogenizes the local charge distribution. Consequently, dense Zn deposition is visualized with neglected Zn loss for At‐Sn@HCN, in sharp contrast to hollow carbon spheres (HCN) and bulk Sn‐loaded HCN visualizing dead Zn formation and interphase peeling off, respectively. Consequently, the full cells achieve prolonged cycling under anode‐lean configuration for 500 cycles, and even can be stably operated under negative to positive areal capacity ratio of 2.2 with alleviated decay rate, superior to those of most reported literatures. These findings open up new horizons for practical deployment of Zn metal batteries.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3