Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t‐Li7SiPS8

Author:

Schneider Christian1ORCID,Schmidt Christoph P.2,Neumann Anton34,Clausnitzer Moritz34,Sadowski Marcel5,Harm Sascha16,Meier Christoph2,Danner Timo34,Albe Karsten5,Latz Arnulf347,Wall Wolfgang A.2,Lotsch Bettina V.16ORCID

Affiliation:

1. Max Planck Institute for Solid State Research Heisenbergstraße 1 70569 Stuttgart Germany

2. Technical University of Munich Institute for Computational Mechanics Bolzmannstraße 15 85748 Garching bei München Germany

3. German Aerospace Center (DLR) Institute of Engineering Thermodynamics Pfaffenwaldring 38‐40 70569 Stuttgart Germany

4. Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU) Helmholtzstraße 11 89081 Ulm Germany

5. Institute of Materials Science Technical University of Darmstadt Otto‐Berndt‐Straße 3 64287 Darmstadt Germany

6. Department of Chemistry, University of Munich (LMU) Butenandstraße 5‐13 81377 Munich Germany

7. Ulm University Institute of Electrochemistry Albert‐Einstein‐Allee 47 89081 Ulm Germany

Abstract

AbstractAll‐solid‐state batteries promise higher energy and power densities as well as increased safety compared to lithium‐ion batteries by using non‐flammable solid electrolytes and metallic lithium as the anode. Ensuring permanent and close contact between the components and individual particles is crucial for long‐term operation of a solid‐state cell. This study investigates the particle size dependent compression mechanics and ionic conductivity of the mechanically soft thiophosphate solid electrolyte tetragonal Li7SiPS8 (t‐LiSiPS) under pressure. The effect of stack and pelletizing pressure is demonstrated as a powerful tool to influence the microstructure and, hence, ionic conductivity of t‐LiSiPS. Heckel analysis for granular powder compression reveals distinct pressure regimes, which differently impact the Li ion conductivity. The pelletizing process is simulated using the discrete element method followed by finite volume analysis to disentangle the effects of pressure‐dependent microstructure evolution from atomistic activation volume effects. Furthermore, it is found that the relative density of a tablet is a weaker descriptor for the sample's impedance compared to the particle size distribution. The multiscale experimental and theoretical study thus captures both atomistic and microstructural effects of pressure on the ionic conductivity, thus emphasizing the importance of microstructure, particle size distribution and pressure control in solid electrolytes.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3