Thin, Highly Ionic Conductive, and Mechanically Robust Frame‐Based Solid Electrolyte Membrane for All‐Solid‐State Li Batteries

Author:

Kim Dohwan1,Lee Hyobin1,Roh Youngjoon1,Lee Jongjun1,Song Jihun1,Dzakpasu Cyril Bubu1,Kang Seok Hun2,Choi Jaecheol2,Kim Dong Hyeon3,Hah Hoe Jin3,Cho Kuk Young4,Lee Young‐Gi2,Lee Yong Min15ORCID

Affiliation:

1. Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang‐daero Dalseong‐gun Daegu 42988 Republic of Korea

2. Materials and Components Research Division Electronics and Telecommunications Research Institute (ETRI) 218 Gajeongno Yuseong‐gu Daejeon 34129 Republic of Korea

3. Battery R&D LG Energy Solution 10 Magokjungang 10‐ro Gangseo‐gu Seoul 07796 Republic of Korea

4. Department of Materials Science and Chemical Engineering Hanyang University 55 Hanyangdaehak‐ro, Sangnok‐gu Ansan‐si Gyeonggi 15588 Republic of Korea

5. Energy Science and Engineering Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang‐daero Dalseong‐gun Daegu 42988 Republic of Korea

Abstract

AbstractA thin but robust solid electrolyte layer is crucial for realizing the theoretical energy density of all‐solid‐state batteries (ASSBs) beyond state‐of‐the‐art Li‐ion batteries (LIBs). This study proposes a simple but practical strategy for fabricating thin solid electrolyte membranes using 5‐µm perforated polyethylene separators with 35% open areas as the supporting component, which ensures mechanical robustness for commercial‐level cell assembly. The thickness of this frame‐based solid electrolyte (f‐SE) membrane can be reduced to ≈45 µm, even after coating the Li6PS5Cl (LPSCl) solid electrolyte composite. Despite a slightly lower ionic conductivity compared to that of thick LPSCl pellets, the f‐SE membranes show high conductance and low overpotential in Li||Li symmetric cells. Their incorporation into LiNi0.7Co0.15Mn0.15O2 full cells increases the reversible capacity and rate capability compared to those of cells with conventional LPSCl pellets. The f‐SE membrane cells exhibit excellent cycling stability over 250 cycles, while maintaining high‐capacity retention and Coulombic efficiency. Notably, the f‐SE membranes significantly increase the energy density of ASSBs (314 Wh kg−1), exceeding the values reported for sulfide‐based cells. These results highlight the crucial role of f‐SE membranes in improving the mechanical properties and energy density of ASSBs, thereby contributing to the development of next‐generation Li battery technologies.

Funder

Korea Evaluation Institute of Industrial Technology

National Research Foundation of Korea

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3