Evaporated Self‐Assembled Monolayer Hole Transport Layers: Lossless Interfaces in p‐i‐n Perovskite Solar Cells

Author:

Farag Ahmed12,Feeney Thomas1,Hossain Ihteaz M.2,Schackmar Fabian12,Fassl Paul12,Küster Kathrin3,Bäuerle Rainer4,Ruiz‐Preciado Marco A.12,Hentschel Mario5,Ritzer David B.12,Diercks Alexander1,Li Yang12,Nejand Bahram Abdollahi12,Laufer Felix1,Singh Roja12,Starke Ulrich3,Paetzold Ulrich W.12ORCID

Affiliation:

1. Light Technology Institute Karlsruhe Institute of Technology (KIT) Engesserstrasse 13 76131 Karlsruhe Germany

2. Institute of Microstructure Technology Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

3. Max Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany

4. InnovationLab Speyerer Str. 4 69115 Heidelberg Germany

5. 4th Physics Institute and Research Center SCoPE Pfaffenwaldring 57 70569 Stuttgart Germany

Abstract

AbstractEngineering of the interface between perovskite absorber thin films and charge transport layers has fueled the development of perovskite solar cells (PSCs) over the past decade. For p‐i‐n PSCs, the development and adoption of hole transport layers utilizing self‐assembled monolayers (SAM‐HTLs) based on carbazole functional groups with phosphonic acid anchoring groups has enabled almost lossless contacts, minimizing interfacial recombination to advance power conversion efficiency in single‐junction and tandem solar cells. However, so far these materials have been deposited exclusively via solution‐based methods. Here, for the first time, vacuum‐based evaporation of the most common carbazole‐based SAM‐HTLs (2PACz, MeO‐2PACz, and Me‐4PACz) is reported. X‐ray photoelectron spectroscopy and infrared spectroscopy demonstrate no observable chemical differences in the evaporated SAMs compared to solution‐processed counterparts. Consequently, the near lossless interfacial properties are either preserved or even slightly improved as demonstrated via photoluminescence measurements and an enhancement in open‐circuit voltage. Strikingly, applying evaporated SAM‐HTLs to complete PSCs demonstrates comparable performance to their solution‐processed counterparts. Furthermore, vacuum deposition is found to improve perovskite wetting and fabrication yield on previously non‐ideal materials (namely Me‐4PACz) and to display conformal and high‐quality coating of micrometer‐sized textured surfaces, improving the versatility of these materials without sacrificing their beneficial properties.

Funder

Helmholtz Association

Helmholtz Energy Materials Foundry

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3