Dendrite Growth—Microstructure—Stress—Interrelations in Garnet Solid‐State Electrolyte

Author:

Raj Vikalp12ORCID,Naik Kaustubh G.3,Vishnugopi Bairav S.3,Rana Ajeet Kumar1,Manning Andrew Scott2,Mahapatra Smruti Rekha1,Varun KR1,Singh Vipin1,Nigam Abhineet1,McBrayer Josefine D.4,Mukherjee Partha P.3,Aetukuri Naga Phani B.1ORCID,Mitlin David2ORCID

Affiliation:

1. Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore Karnataka 560012 India

2. Materials Science and Engineering Program & Texas Materials Institute (TMI) The University of Texas at Austin Austin TX 78712 USA

3. School of Mechanical Engineering Purdue University West Lafayette IN 47907 USA

4. Power Sources Technology Group Sandia National Laboratories Albuquerque NM 87123 USA

Abstract

AbstractThis study illustrates how the microstructure of garnet solid‐state electrolytes (SSE) affects the stress‐state and dendrite growth. Tantalum‐doped lithium lanthanum zirconium oxide (LLZTO, Li6.4La3Zr1.4Ta0.6O12) is synthesized by powder processing and sintering (AS), or with the incorporation of intermediate‐stage high‐energy milling (M). The M compact displays higher density (91.5% vs 82.5% of theoretical), and per quantitative stereology, lower average grain size (5.4 ± 2.6 vs 21.3 ± 11.1 µm) and lower AFM‐derived RMS surface roughness contacting the Li metal (45 vs 161 nm). These differences enable symmetric M cells to electrochemically cycle at constant capacity (0.1 mAh cm−2) with enhanced critical current density (CCD) of 1.4 versus 0.3 mA cm−2. It is demonstrated that LLZTO grain size distribution and internal porosity critically affect electrical short‐circuit failure, indicating the importance of electronic properties. Lithium dendrites propagate intergranularly through regions where LLZTO grains are smaller than the bulk average (7.4 ± 3.8 µm for AS in a symmetric cell, 3.1 ± 1.4 µm for M in a half‐cell). Metal also accumulates in the otherwise empty pores of the sintered compact present along the dendrite path. Mechanistic modeling indicates that reaction and stress heterogeneities are interrelated, leading to current focusing and preferential plating at grain boundaries.

Funder

Basic Energy Sciences

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3