Affiliation:
1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University Jinhua 321004 China
2. Department of Optical Science and Engineering Fudan University Shanghai 200438 China
3. College of Chemistry and Materials Engineering Zhejiang A&F University Hangzhou 311300 China
Abstract
AbstractAs one of the most appealing energy storage technologies, aqueous zinc‐iodine batteries still suffer severe problems such as low energy density, slow iodine conversion kinetics, and polyiodide shuttle. This review summarizes the recent development of Zn─I2 batteries with a focus on the electrochemistry of iodine conversion and the underlying working mechanism. Starting from the fundamentals of Zn─I2 batteries, the electrochemistry of iodine conversion and zinc anode, as well as the scientific problems existing in Zn─I2 batteries are introduced. The concrete strategies dealing with cathode, anode, electrolyte, and separator challenges confronting Zn─I2 batteries are elaborated as well. To deepen the understanding of the electrochemistry of Zn─I2 batteries, the recent important findings of the underlying working mechanism of different Zn─I2 batteries are summarized in detail. Finally, some guidelines and directions for Zn─I2 batteries are also provided. This review is expected to deepen the understanding of Zn─I2 battery electrochemistry and promote their practical applications in the future.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献