Photochemical Oxidation of Substrate Water Analogs and Halides by Photosystem II

Author:

Shin Jieun1,Kanyo Jean2,Debus Richard J.3ORCID,Brudvig Gary W.1ORCID

Affiliation:

1. Department of Chemistry Yale University 225 Prospect Street New Haven CT 06520 USA

2. Keck MS & Proteomics Resource Yale University 333 Cedar Street New Haven CT 06510 USA

3. Department of Biochemistry University of California Riverside CA 92521 USA

Abstract

AbstractPhotosystem II (PSII) is a multi‐subunit protein‐pigment complex with diverse redox‐active cofactors, which enabled the biological availability of O2 on Earth. The substrate specificity and the underlying redox chemistry of the Mn4CaO5 catalytic center are investigated using alternate substrates such as small molecules (ammonia and methanol) and halides (Cl, Br, I) instead of the natural substrate water. Changes in the kinetic profiles of steady‐state O2 evolution and of dichlorophenolindophenol (DCIP) photochemical reduction by PSII as well as the detection of modified sites by proteomic analysis implied the possibility of alternate substrate photooxidation. Of particular interest is the role of two chlorides bound close to the putative water channels in the native system. The mutation of D2‐K317 to alanine is believed to impair the binding of a catalytically relevant chloride, eliminating the chloride requirement for water oxidation catalysis. The efficiency of small molecule photooxidation by the OEC is enhanced by the mutated D2‐K317A PSII complex without the competition from chloride. These results provide insight into the role of bound chloride in native PSII as a filter for enhancing the selectivity of water oxidation. The design principles for PSII may be extended to new strategies for developing highly selective catalysts.

Funder

Yale School of Medicine

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3