Quantitative Understanding of Lithium Deposition‐Stripping Process on Graphite Anodes of Lithium‐Ion Batteries

Author:

Duan Xudong1,Li Binqi2,Li Jiani34,Gao Xiang34,Wang Lubing2,Xu Jun345ORCID

Affiliation:

1. Department of Automotive Engineering School of Transportation Science and Engineering Beihang University Beijing 100191 China

2. Key Laboratory Impact & Safety Engineering Ministry of Education Ningbo University Ningbo Zhejiang 315211 China

3. Department of Mechanical Engineering and Engineering Science The University of North Carolina at Charlotte Charlotte NC 28223 USA

4. Vehicle Energy & Safety Laboratory (VESL) Battery Complexity Autonomous Vehicle and Electrification (BATT CAVE) Research Center The University of North Carolina at Charlotte Charlotte NC 28223 USA

5. School of Data Science The University of North Carolina at Charlotte Charlotte NC 28223 USA

Abstract

AbstractMetallic Lithium deposited on graphite particles is the major phenomenon responsible for the degradation of cell capacity, triggering of internal short circuit (ISC), and exacerbating thermal runaway (TR) in lithium‐ion batteries (LIBs). However, currently, no available physics‐based model can provide an accurate quantitative description of lithium‐plating behavior. Herein, this work establishes a mechanism model to characterize the Li deposition‐stripping process, especially the formation of dead Li and the reversibility of deposited Li. By the combination of the battery model and 3D particle model with the Li deposition‐stripping model, this work enables the quantitative prediction of Li deposition during charging–discharging cycles at various charging rates. Based on the revealed understanding of the Li deposition‐stripping process, a smart charging strategy with the optimization of the minimized Li‐deposition and expedited charging time is proposed. Furthermore, this work also quantifies the influence of anode heterogeneity on Li plating. The results highlight the promise of physics‐based mechanistic modeling for the quantification of the Li disposition‐stripping process and provide fundamental guidance on battery design and charging protocols for next‐generation long cycle life Li‐ion cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3