Advanced Materials and Additive Manufacturing for Phase Change Thermal Energy Storage and Management: A Review

Author:

Freeman Thomas B.12,Foster Kyle E.O.1,Troxler Casey J.2,Irvin Cameron W.3,Aday Anastasia1,Boetcher Sandra K. S.2,Mahvi Allison4,Smith Matthew K.3,Odukomaiya Adewale1ORCID

Affiliation:

1. Building Technologies and Science Center National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA

2. Department of Mechanical Engineering Embry‐Riddle Aeronautical University 1 Aerospace Boulevard Daytona Beach Florida 32114 USA

3. TCPoly, Inc 3688 Clearview Avenue, #205 Doraville Georgia 30304 USA

4. Department of Mechanical Engineering University of Wisconsin – Madison 1513 University Avenue Madison Wisconsin 53706 USA

Abstract

AbstractPhase change materials (PCMs) can enhance the performance of energy systems by time shifting or reducing peak thermal loads. The effectiveness of a PCM is defined by its energy and power density—the total available storage capacity (kWh m−3) and how fast it can be accessed (kW m−3). These are influenced by both material properties as well as geometry of the energy systems; however, prior efforts have primarily focused on improving material properties, namely, maximizing latent heat of fusion and increasing thermal conductivity. The latter is often at the expense of the former. Advanced manufacturing techniques hold tremendous potential to enable co‐optimization of material properties and device geometry, while potentially reducing material waste and manufacturing time. There is an emerging body of research focused on additive manufacturing of PCM composites and devices for thermal energy storage (TES) and thermal management. In this article, the fundamentals and applications of PCMs are reviewed and recent additive manufacturing advances in latent heat TES for both the PCM composite and associated heat exchanger are discussed. A forward‐looking perspective on the future and potential of PCM additive manufacturing for TES and thermal management is provided.

Funder

National Renewable Energy Laboratory

U.S. Department of Energy

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3