Affiliation:
1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215006 China
2. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
Abstract
AbstractAlthough the conventional n‐i‐p or p‐i‐n perovskite solar cells (PSCs) can produce ultrahigh efficiency (>25%), complex synthesis/deposition processes together with strict requirements for preparing the hole‐ and electron‐transport layers (HTLs and ETLs) pose a challenge to accessing low‐cost perovskite devices. To address this issue, a simple strategy of employing a self‐doped perovskite homojunction to replace the HTLs and ETLs has been widely proposed. However, this type of TL‐free homojunction PSCs is usually endowed with poor efficiency. Here, the design principles and working mechanisms of the TL‐free homojunction PSCs are clarified via a rigorous photoelectric simulation. The potential of this type of device is unlocked by optimizing the structural/electrical parameters including thickness, doping concentration, bulk/interface defect concentration, contact barrier, and mobility of n‐perovskite and p‐perovskite. To further uncover the intrinsic physical behavior, ion migration, and photon recycling effects on this type of TL‐free homojunction PSCs are also studied. In addition, devices with different types of structures including TL‐free inverted, ETL‐free, and HTL‐free designs are briefly discussed. Finally, a clear roadmap for the promotion of device efficiency is proposed, providing valuable guidance for designing high‐efficient TL‐free homojunction PSCs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献