Affiliation:
1. CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
2. University of Chinese Academy of Sciences Bejing 100049 China
Abstract
AbstractThe electrochemical desalination technique is recognized as a promising solution to alleviate freshwater shortages, challenges yet persists in achieving optimal energy efficiency and cost‐effectiveness. Herein, a hybrid acid/alkali zinc air desalination battery (hAA‐ZADB) capable of concurrent desalination and high‐power density is reported. To improve cathodic efficiency and cost‐effectiveness, an electrocatalyst with dual atomic Fe–Mn sites on porous dodecahedral carbon (Mn‐Fe/p‐DC) is fabricated through a simple direct pyrolysis strategy for oxygen reduction reaction (ORR). The Mn–Fe/p‐DC‐900 electrocatalyst demonstrates exceptional electrocatalytic activity (E1/2 = 0.8 V in 0.5 m H2SO4) for ORR. This innovative hybrid acid/alkali cell design, coupled with advanced electrocatalysts, empowers the hAA‐ZADB system to achieve outstanding performance benchmarks with a high open circuit voltage of 2.22 V, an impressive power density of 375 mW cm−2, and notably elevated energy output of 106.9 kJ mol−1 even at a current density of 100 mA cm−2 during desalination. Distinguishing this work is its additional functionality, evident in a rapid salt removal rate of 3.64 mg cm−2 min−1 during desalination, achieving an impressive 88.67% removal of 0.6 M NaCl. This study highlights the promising potential of employing metallic air batteries for a self‐powered desalination technique applicable to specific scenarios.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献