Affiliation:
1. Shenzhen Key Laboratory of Advanced Energy Storage Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 China
2. SUSTech Energy Institute for Carbon Neutrality Southern University of Science and Technology Shenzhen 518055 China
3. School of Automotive Engineering Changzhou Institute of Technology Changzhou 213000 China
Abstract
AbstractThe pursuit of high‐performance energy storage devices has fueled significant advancements in the all‐solid‐state lithium batteries (ASSLBs). One of the strategies to enhance the performance of ASSLBs, especially concerning high‐voltage cathodes, is optimizing the structure of composite polymer electrolytes (CPEs). This study fabricates a high‐oriented framework of Li6.4La3Zr2Al0.2O12 (o‐LLZO) ceramic nanofibers, meticulously addressing challenges in both the Li metal anode and the high‐voltage LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The as‐constructed electrolyte features a highly efficient Li+ transport and robust mechanical network, enhancing both electron and ion transport, ensuring uniform current density distribution, and stress distribution, and effectively suppressing Li dendrite growth. Remarkably, the Li symmetric cells exhibit outstanding long‐term lifespan of 9800 h at 0.1 mA cm−2 and operate effectively over 800 h even at 1.0 mA cm−2 under 30 °C. The CPEs design results from the formation of a gradient LiF‐riched SEI and CEI film at the Li/electrolyte/NCM811 dual interfaces, enhancing ion conduction and maintaining electrode integrity. The coin‐cells and pouch cells demonstrate prolonged cycling stability and superior capacity retention. This study sets a notable precedent in advancing high‐energy ASSLBs.
Funder
National Natural Science Foundation of China
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献