Achieving High‐Power and Dendrite‐Free Lithium Metal Anodes via Interfacial Ion‐Transport‐Rectifying Pump

Author:

Feng Yang1,Zhong Beidou1,Zhang Ruochen1,Peng Maoyu2,Hu Zhe2,Wu Zhonghan1,Deng Nanping3,Zhang Wang2,Zhang Kai14ORCID

Affiliation:

1. Frontiers Science Center for New Organic Matter Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Engineering Research Center of High‐efficiency Energy Storage (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China

2. College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China

3. State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin 300387 P. R. China

4. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China

Abstract

AbstractMetallic lithium is a fascinating anode for the next‐generation energy‐dense rechargeable batteries owing to the highest theoretical specific capacity and lowest electrochemical potential. Nevertheless, sluggish desolvation kinetics and notorious dendritic growth hinder its electrochemical performance and safe operation. Herein, an interlamellar Li+ conductor of Ag‐montmorillonite (AMMT) is proposed as an interfacial ion‐transport‐rectifying pump to induce the rapid and reversible plating/stripping of Li metal. Joint experimental and computational analyses reveal that the AMMT pump with negative charge layers and inherent channels can lower the desolvation energy and boost Li+ transport. The resultant Li anode is endowed with a low nucleation barrier (22.2 mV) and dendrite‐free features, leading to high plating/stripping density (8 mA cm‐2) and long lifespan (2500 h). Moreover, the corresponding Li||LiFePO4 batteries achieve a steady circulation (500 cycles@82%, 1 C) with a low N/P ratio. This strategy offers a fresh insight into constructing robust multifunctional electrolyte/Li anode interface for Li metal batteries.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3