Data‐Driven Decoupling Structural Feature Correlation for Harnessing Anionic Capacity in Na Layered Oxide

Author:

Kim Jongbeom1ORCID,Yoon Sangho1ORCID,Kim Taesoo1,Choi Gwanghyeon1,Kwon Dohyeong1,Kee Joonyoung1,Hwang Juncheol1,Min Woosik1,Lee Seokhyun1,Shin Seungun1,Kim Duho12ORCID

Affiliation:

1. Department of Mechanical Engineering (Integrated Engineering Program) Kyung Hee University 1732, Deogyeong‐daero, Giheung‐gu Yongin‐si Gyeonggi‐do 17104 Republic of Korea

2. Department of KHU‐KIST Convergence Science and Technology Kyung Hee University 23, Kyunghee‐daero, Dongdaemun‐gu Seoul Republic of Korea 02447

Abstract

AbstractA data‐driven understanding of the reaction mechanism of the O3‐type Na[Li1/3Mn2/3]O2‐layered cathode model is systematically performed to decouple the complex correlations of covariate scale‐dependent variables in diagnosing and solving structural problems for facilitating nonhysteretic and reversible (nHR) oxygen capacities using interpretable machine learning (ML) assisted by density functional theory. A large dataset of vacancy formation energies depending on the desodiation mode for the oxide is investigated in detail, and it provides two numerical principles: i) linearizing the energy landscape and ii) steepening its slope to reach the ideal reaction. The heatmaps comprising Pearson coefficient correlation values are broken down into two‐scale components: i) macroscopic and ii) local structure features. Deriving the overall mitigation of scale‐dependent covariate variables in negative correlation potentially leads to nHR anionic redox upon (dis)charging. Containing the scale‐dependent features, the interpretable ML model based on a gradient‐boosting machine predicts each formation energy well. With data‐driven comprehension, honeycomb‐ and turtle‐type superstructures (TS) have been suggested depending on the thermodynamic (un)favorable pathways during desodiation from a local structural perspective, and the dangling O2– in the TS is a critical origin leading to the formation of O2 molecules trapped in the bulk.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3