Solid Polymer Electrolytes with Enhanced Electrochemical Stability for High‐Capacity Aluminum Batteries

Author:

Leung Oi Man1ORCID,Gordon Leo W.2ORCID,Messinger Robert J.2ORCID,Prodromakis Themis3,Wharton Julian A.1,Ponce de León Carlos1,Schoetz Theresa124ORCID

Affiliation:

1. Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK

2. Department of Chemical Engineering The City College of New York CUNY New York 10031 USA

3. Centre for Electronics Frontiers School of Engineering University of Edinburgh Edinburgh EH9 3JL UK

4. Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

Abstract

AbstractChloroaluminate ionic liquids are commonly used electrolytes in rechargeable aluminum batteries due to their ability to reversibly electrodeposit aluminum at room temperature. Progress in aluminum batteries is currently hindered by the limited electrochemical stability, corrosivity, and moisture sensitivity of these ionic liquids. Here, a solid polymer electrolyte based on 1‐ethyl‐3‐methylimidazolium chloride‐aluminum chloride, polyethylene oxide, and fumed silica is developed, exhibiting increased electrochemical stability over the ionic liquid while maintaining a high ionic conductivity of ≈13 mS cm−1. In aluminum–graphite cells, the solid polymer electrolytes enable charging to 2.8 V, achieving a maximum specific capacity of 194 mA h g−1 at 66 mA g−1. Long‐term cycling at 2.7 V showed a reversible capacity of 123 mA h g−1 at 360 mA g−1 and 98.4% coulombic efficiency after 1000 cycles. Solid‐state nuclear magnetic resonance spectroscopy measurements reveal the formation of five‐coordinate aluminum species that crosslink the polymer network to enable a high ionic liquid loading in the solid electrolyte. This study provides new insights into the molecular‐level design and understanding of polymer electrolytes for high‐capacity aluminum batteries with extended potential limits.

Funder

National Science Foundation

National Aeronautics and Space Administration

Lloyd's Register Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3