Single Versus Blended Electrolyte Additives: Impact of a Sulfur‐Based Electrolyte Additive on Electrode Cross‐Talk and Electrochemical Performance of LiNiO2||Graphite Cells

Author:

Wölke Christian1ORCID,Benayad Anass2,Lai Thanh‐Loan2,Hanke Felix3,Baraldi Giorgio4,Echeverría María4,Esen Ekin4,Ayerbe Elixabete4,Neale Alex R.5,Everitt Jacqui5,Hardwick Laurence J.5,Yan Peng1,Poterała Marcin6,Wieczorek Władysław6,Winter Martin17,Cekic‐Laskovic Isidora1ORCID

Affiliation:

1. Forschungszentrum Jülich GmbH Helmholtz‐Institute Münster (IEK‐12) Corrensstraße 48 48149 Münster Germany

2. Univ. Grenoble Alpes CEA Liten Grenoble 38054 France

3. Dassault Systèmes 22 Science Park Cambridge CB4 0FJ UK

4. CIDETEC Basque Research and Technology Alliance (BRTA) Paseo Miramón 196 Donostia‐San Sebastián 20014 Spain

5. Stephenson Institute for Renewable Energy Department of Chemistry University of Liverpool Chadwick Building, Peach Street Liverpool L69 7ZF UK

6. Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 Warsaw 00‐664 Poland

7. MEET Battery Research Center University of Münster Corrensstraße 46 48149 Münster Germany

Abstract

AbstractLithium nickel oxide (LNO) is an attractive positive electrode active material for lithium ion batteries (LIBs) due to its high reversible specific capacity and absence of cobalt. Nevertheless, it is prone to structural instabilities that lead to rapid capacity fading, safety concerns and shows in average a lower voltage than mixtures with cobalt, limiting its applicability to date. Herein this study introduces the sulfur‐based electrolyte additive, benzo[d][1,3,2]dioxathiole 2,2‐dioxide (DTDPh), to stabilize the LNO electrode and study its effects on interphase compositions by means of complementary electrochemical and spectroscopic techniques. Obtained results demonstrate an improved galvanostatic cycling performance in terms of cycle life and achievable specific discharge capacity that significantly outperform the common film‐forming additive vinylene carbonate (VC). The cycle life is increased from 102 to 147 cycles compared to the baseline electrolyte and the accumulated discharge energy until end of life is increased by 45%. This study furthermore provides strong evidence of a significant cross‐talk and negative interplay between DTDPh and VC when both are present in the electrolyte formulation. Mechanistic consideration based on density functional theory (DFT) calculations suggest the formation of mobile poly(VC) species, which is supported by the results of post mortem analysis of the resulting interphases.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3