Electricity Generation from Phase Transitions between Liquid and Gaseous Water

Author:

Shao Beibei12,Song Yuhang12,Song Zheheng12,Wang Yanan12,Wang Yusheng123,Liu Ruiyuan23,Sun Baoquan124ORCID

Affiliation:

1. Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China

2. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou Jiangsu 215123 P. R. China

3. Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow Institute of Energy and Material Innovations Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry College of Energy Soochow University Suzhou Jiangsu 215123 P. R. China

4. Macau Institute of Materials Science and Engineering MUST‐SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Macau 999078 P. R. China

Abstract

AbstractThe ubiquitous and spontaneous phase transitions between liquid and gaseous water contain substantial energy that can be harvested by emerging hydrovoltaic technologies, including evaporation‐induced generators (EIGs) and moisture‐induced generators (MIGs). Featuring the virtues of ubiquity, spontaneity, and direct current output, this emerging technology broadens the technical feasibility of harvesting energy from the natural water cycle, enabling self‐powered and sustainable electronics. Elaborated materials synthesis and innovative device design have been proposed to facilitate efficient water energy harvesting. However, some critical challenges in gaining insight into the mechanisms, power improvements, and practical applications are imperative to be overcome for this nascent yet impactful field. Herein, the evolution and advances of EIGs and MIGs are comprehensively summarized. The basic principles of phase transitions between liquid and gaseous water and the mechanisms of power generation are clarified. Then the current materials systems and strategies to further enhance the device performance are reviewed and thoroughly evaluated. The exemplary applications assembled in EIGs and MIGs are also outlined. Finally, the main challenges and future orientations of this burgeoning technology are presented.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Priority Academic Program Development of Jiangsu Higher Education Institutions

Collaborative Innovation Center of Suzhou Nano Science and Technology

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3