Mismatch of Quasi–Fermi Level Splitting and Voc in Perovskite Solar Cells

Author:

Warby Jonathan1ORCID,Shah Sahil1,Thiesbrummel Jarla12ORCID,Gutierrez‐Partida Emilio1,Lai Huagui3ORCID,Alebachew Biruk1,Grischek Max4,Yang Fengjiu4,Lang Felix1,Albrecht Steve4,Fu Fan3,Neher Dieter1,Stolterfoht Martin15ORCID

Affiliation:

1. Institute of Physics and Astronomy University of Potsdam Karl‐Liebknecht‐Str. 24–25 D‐14476 Potsdam‐Golm Germany

2. Clarendon Laboratory University of Oxford Parks Road Oxford OX1 3PU UK

3. Laboratory for Thin Films and Photovoltaics Empa – Swiss Federal Laboratories for Materials Science and Technology Duebendorf 8600 Switzerland

4. Division Solar Energy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH 12489 Berlin Germany

5. The Chinese University of Hong Kong Electronic Engineering Department Shatin N.T. 999077 Hong Kong SAR

Abstract

AbstractPerovskite solar cells have demonstrated low non‐radiative voltage losses and open‐circuit voltages (VOCs) that often match the internal voltage in the perovskite layer, i.e. the quasi‐Femi level splitting (QFLS). However, in many cases, the VOC differs remarkably from the internal voltage, for example in devices without perfect energy alignment. In terms of recombination losses, this loss often outweighs all non‐radiative recombination losses observed in photoluminescence quantum efficiency measurements by many orders of magnitude. As such, understanding this phenomenon is of great importance for further perovskite solar cell development and tackling stability issues. The classical theory developed for Si solar cells explains the QFLS‐VOC mismatch by considering the partial resistances/conductivities for majority and minority carriers. Here, the authors demonstrate that this generic theory applies to a variety of physical mechanisms that give rise to such a mismatch. Additionally, it is found that mobile ions can contribute to a QFLS‐VOC mismatch in realistic perovskite cells, and it is demonstrated that this can explain various key observations about light soaking and aging‐induced VOC losses. The findings in this paper shine a light on well‐debated topics in the community, identify a new degradation loss, and highlight important design principles to maximize the VOC for improved perovskite solar cells.

Funder

Universität Potsdam

Bundesministerium für Wirtschaft und Energie

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3