Electronic Enhancement Engineering by Atomic Fe–N4 Sites for Highly‐Efficient PEMFCs: Tailored Electric‐Thermal Field on Pt Surface

Author:

Wang Kun1,Yang Hao2,Wang Qiushi1,Yu Jinli3,He Yu1,Wang Yifan1,Song Shuqin1ORCID,Wang Yi1

Affiliation:

1. The Key Lab of Low‐Carbon Chemistry & Energy Conservation of Guangdong Province PCFM Lab School of Materials Science and Engineering School of Chemical Engineering and Technology School of Chemistry Sun Yat‐sen University Guangzhou 510275 P. R. China

2. School of Chemistry & Chemical Engineering Guangxi University Nanning 530004 P. R. China

3. Department of Chemistry City University of Hong Kong Hong Kong 999077 P. R. China

Abstract

AbstractLowering noble‐metal Pt usage and simultaneously enhancing electrocatalytic oxygen reduction reaction (ORR) activity and stability of Pt‐based ORR electrocatalysts is the key to realize the large‐scale application of fuel cells. Here, an effective strategy is developed to reduce Pt usage through the strong electron interaction between uniform Pt nanoparticles (≈4.0 nm) and abundant atomically dispersed Fe–N4 sites modified on an ordered mesoporous carbon (OMC) surface for efficiently enhancing ORR performance. Density functional theory (DFT) calculations show that the strong electron interactions between Pt and Fe–N4 sites decrease the d‐band center of Pt in Pt@Fe–N–OMC‐2 by 0.21 eV relative to that of as‐prepared Pt@OMC, indicating the weakened O2 adsorption and accelerated desorption of oxygenated species on Pt sites. In situ Raman spectra demonstrate that the introduction of Fe–N4 moieties promotes the O–OH dissociation process. Finite element method simulations reveal that the electric and thermal field of the embedded Pt nanoparticle surface is enhanced through modifying Fe–N4 sites on the OMC surface, accelerating the accumulation of ORR‐related species (O2, H+, and H2O), which is conductive to electrocatalyzing the ORR. This innovative approach not only illustrates the synergistic mechanism between Pt and Fe–N4 sites, but also simultaneously provides new avenues to design advanced electrocatalysts for fuel cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3