Low‐Temperature Sodium‐Ion Batteries: Challenges and Progress

Author:

Bai Zhongchao1,Yao Qian2,Wang Mingyue3,Meng Weijia4,Dou Shixue1,Liu Hua kun1,Wang Nana3

Affiliation:

1. Institute of Energy Materials Science (IEMS) University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China

2. Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China

3. Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, Innovation Campus University of Wollongong Squires Way North Wollongong NSW 2500 Australia

4. Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving School of Energy and Electrical Engineering Chang'an University Xi'an 710061 China

Abstract

AbstractAs an ideal candidate for the next generation of large‐scale energy storage devices, sodium‐ion batteries (SIBs) have received great attention due to their low cost. However, the practical utility of SIBs faces constraints imposed by geographical and environmental factors, particularly in high‐altitude and cold regions. In these areas, the low‐temperature (LT) performance of SIBs presents a pressing technological challenge that requires significant breakthroughs. In LT environments, the electrochemical reaction kinetics of SIBs are sluggish, the electrode/electrolyte interface is unstable, and the diffusion of sodium ions in electrode materials is slow, leading to a decrease in battery performance. Therefore, the reasonable design of electrolyte and electrode materials is of great significance for optimizing the LT performance of SIBs. In this review, the research progress of LT SIBs electrolytes, cathode, and anode materials, as well as sodium metal batteries and solid‐state electrolytes is systematically summarized in recent years, aiming to understand the design principles of LT SIBs, clarify the basic research and development of high‐performance SIBs in practical applications, and promote the development of SIBs technology in the full temperature range.

Funder

Australian Research Council

University of Wollongong

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3