Li‐Ion Transfer Mechanism of Ambient‐Temperature Solid Polymer Electrolyte toward Lithium Metal Battery

Author:

Wang Su1,Sun Qifang1,Zhang Qing1,Li Chen1,Xu Chaoran1,Ma Yue1,Shi Xixi1,Zhang Hongzhou1,Song Dawei1ORCID,Zhang Lianqi1

Affiliation:

1. School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China

Abstract

AbstractThe low ionic conductivity and short service life of solid polymer electrolytes (SPEs) limit the application of ambient‐temperature polymer lithium metal batteries, which is perhaps a result of the inherent restricted segment movement of the polymer at room temperature. Herein, an ambient‐temperature dual‐layer solid polymer electrolyte is developed and the related working mechanisms are innovatively investigated. In the strategy, poly(propylene carbonate) (PPC)/succinonitrile (SN) contacts with the cathode while polyethylene oxide (PEO)/Li7La3Zr2O12 is adopted near the anode. Molecular dynamics simulations demonstrate the formation of solvated sheath‐like structure [SN···Li+], which demonstrates strong interaction with polymers (PPC···[SN···Li+]/PEO···[SN···Li+]). Further density functional theory calculations show that these structures, allow rapid transport of Li ions through polymer segments. These results are confirmed with Fourier transform infrared spectroscopy and nuclear magnetic resonance. Therefore, the Li‐ion transport mechanism for ambient‐temperature SPEs can be reasonably revealed. Remarkably, the binding energy between PPC and SN is stronger than that of PEO, which helps avoid the parasitic reaction between SN and Li. A low overpotential of 55 mV is exhibited for Li/Li symmetrical cells after 1000 h. Notably, a capacity retention of 86.3% is maintained for LiNi0.6Co0.2Mn0.2O2/Li cell at 25 °C, implying good application potential in ambient‐temperature high voltage lithium metal batteries.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3