Growth–defense trade‐offs promote habitat isolation between recently‐diverged species

Author:

Harenčár Julia G.1ORCID,Salazar‐Amoretti Diego2,García‐Robledo Carlos3ORCID,Kay Kathleen M.1

Affiliation:

1. Ecology and Evolutionary Biology Department University of California Santa Cruz California USA

2. Department of Biological Sciences Binghamton University Binghamton New York USA

3. Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA

Abstract

AbstractTrade‐offs are crucial for species divergence and reproductive isolation. Trade‐offs between investment in growth versus defense against herbivores are implicated in tropical forest diversity. Empirically exploring the role of growth–defense trade‐offs in closely related species' reproductive isolation can clarify the eco‐evolutionary dynamics through which growth–defense trade‐offs contribute to diversity. Costus villosissimus and C. allenii are recently diverged, interfertile, and partially sympatric neotropical understory plant species primarily isolated by divergent habitat adaptation. This divergent adaptation involves differences in growth rate, which may constrain investment in defense. Here, we investigate growth–defense trade‐offs and how they relate to the divergent habitat adaptation that isolates these species. We characterize leaf toughness and chemistry, evaluate the feeding preferences of primary beetle herbivores in controlled trials and field‐based experiments, and investigate natural herbivory patterns. We find clear trade‐offs between growth and defense: slower‐growing C. allenii has tougher leaves and higher defensive chemical concentrations than faster‐growing C. villosissimus. Costus villosissimus has rapid growth‐based drought avoidance, enabling growth in drier habitats with few specialist herbivores. Therefore, growth–defense trade‐offs mediate synergistic biotic and abiotic selection, causing the divergent habitat adaptation that prevents most interspecific mating between C. villosissimus and C. allenii. Our findings advance understanding of ecological speciation by highlighting the interplay of biotic and abiotic selection that dictates the outcome of trade‐offs.

Funder

Tinker Foundation

Garden Club of America

Directorate for Biological Sciences

Philanthropic Educational Organization

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3