Spatial prediction of plant invasion using a hybrid of machine learning and geostatistical method

Author:

Shen Liang1ORCID,LaRue Elizabeth2,Fei Songlin3ORCID,Zhang Hao4

Affiliation:

1. Department of Statistics Qingdao University of Technology Qingdao China

2. Department of Biological Sciences University of Texas at EI Paso EI Paso Texas USA

3. Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA

4. Department of Statistics and Probability Michigan State University East Lansing Michigan USA

Abstract

AbstractModeling ecological patterns and processes often involve large‐scale and complex high‐dimensional spatial data. Due to the nonlinearity and multicollinearity of ecological data, traditional geostatistical methods have faced great challenges in model accuracy. As machine learning has increased our ability to construct models on big data, the main focus of the study is to propose the use of statistical models that hybridize machine learning and spatial interpolation methods to cope with increasingly large‐scale and complex ecological data. Here, two machine learning algorithms, boosted regression tree (BRT) and least absolute shrinkage and selection operator (LASSO), were combined with ordinary kriging (OK) to model plant invasions across the eastern United States. The accuracies of the hybrid models and conventional models were evaluated by 10‐fold cross‐validation. Based on an invasive plants dataset of 15 ecoregions across the eastern United States, the results showed that the hybrid algorithms were significantly better at predicting plant invasion when compared to commonly used algorithms in terms of RMSE and paired‐samples t‐test (with the p‐value < .0001). Besides, the additional aspect of the combined algorithms is to have the ability to select influential variables associated with the establishment of invasive cover, which cannot be achieved by conventional geostatistics. Higher accuracy in the prediction of large‐scale biological invasions improves our understanding of the ecological conditions that lead to the establishment and spread of plants into novel habitats across spatial scales. The results demonstrate the effectiveness and robustness of the hybrid BRTOK and LASOK that can be used to analyze large‐scale and high‐dimensional spatial datasets, and it has offered an optional source of models for spatial interpolation of ecology properties. It will also provide a better basis for management decisions in early‐detection modeling of invasive species.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3