The impact of host development and density stress on the diversity of microbial communities in the gut and its surrounding environment of the Chinese alligator

Author:

Wang Chong1ORCID,Li Changcheng1,Liu Peng1,Zhang Song2,Zhou Yongkang2,Zhang Xuesong2,Wang Yingchao2,Liu Ruoya2,Wu Xiaobing1ORCID,Nie Haitao1ORCID

Affiliation:

1. Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences Anhui Normal University Wuhu China

2. Alligator Research Center of Anhui Province Xuanzhou China

Abstract

AbstractThe Chinese alligator (Alligator sinensis) is currently an endangered species due to a combination of factors, including climate change, anthropogenic activities, and habitat fragmentation. Captivity plays a crucial role in mitigating the decline of the Chinese alligator population. Currently, there is a lack of clarity regarding the influence of host development and captive conditions on the gut microbiota of Chinese alligators. The aim of the study was to investigate the gut bacterial communities of Chinese alligators and their surrounding environmental bacterial communities using 16S rRNA sequencing. The primary gut flora of Chinese alligators consists of Proteobacteria, Bacteroidetes, and Firmicutes. Proteobacteria is the most abundant and efficient settler in the gut, water, and sediment. PCoA and Adonis test revealed significant differences in bacterial communities across these habitats. Venn analysis revealed overlap in OTUs among the gut, water, and sediment, varying with growth stage and density stress. Different growth stages of Chinese alligator guts harbor distinct pathogenic bacteria, requiring attention. Density stress leads to an increase in pathogenic bacteria, a decrease in gut absorption efficiency. PICRUst2 predicts more abundant metabolic pathways related to gut function during high‐density stress, possibly linked to Roseburia. SourceTracker Analysis indicated that water bacteria have a greater impact on Chinese alligator gut bacteria than sediment, and density stress significantly affects the contribution of environmental microorganisms to the gut microbes of Chinese alligator. BugBase analysis identified water body microbes as the main source of “potentially pathogenic” phenotypes in the gut microbiota. RDA analysis found dissolved oxygen (DO) in water to be the most significant factor influencing water microorganisms, positively correlated with certain pathogenic strains. These findings enhance our understanding of the significance of microbial communities in the gut and surrounding aquatic environment of the Chinese alligator. Furthermore, they provide theoretical support for environmental regulation, disease control, and healthy breeding.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3