Evapotranspiration controls across spatial scales of heterogeneity

Author:

Mangan Mary Rose1ORCID,Hartogensis Oscar1,van Heerwaarden Chiel1,Vilà‐Guerau de Arellano Jordi1

Affiliation:

1. Meteorology and Air Quality Group Wageningen University Wageningen The Netherlands

Abstract

AbstractIn semi‐arid regions where irrigation causes thermal surface heterogeneities, evapotranspiration is controlled not only by the land surface but also by the interaction between the surface and the atmospheric boundary layer. The spatial scale of heterogeneity impacts the processes that drive the diurnal variability of evapotranspiration. In this study, we combine data with a conceptual, coupled land–atmosphere model to study the drivers of evapotranspiration across spatial scales of heterogeneity for the Land Interactions with the Atmosphere in the Iberian Semi‐arid Environment (LIAISE) field campaign. We use a latent heat tendency equation as a diagnostic tool to quantify the contributions of various surface‐ and boundary‐layer driven processes on surface latent heat flux. We define the following spatial scales based on surface characteristics: regional, landscape, and local. We find that, at the regional and landscape scales (1 km), the feedback mechanisms between the surface fluxes and the resulting boundary‐layer dynamics enhance the daily latent heat flux by 64% to 77%. Conversely, at the local scale (100 m), surface‐driven processes are most important for governing evapotranspiration. At the local scale, we find that the energy stored at the surface enhances evaporation in the late afternoon, which could explain the observed time lag between net radiation and latent heat flux. Furthermore, the combined effects of entrainment at the boundary‐layer top and advection of heat and moisture enhance daily latent heat by 27% at the regional scale to 43% at the local scale. This analysis also has implications for the land‐surface modelling community. It suggests that properly reproducing evapotranspiration to capture the relevant processes depends on capacity of the model to resolve the interaction of scales in surface heterogeneous conditions.

Publisher

Wiley

Subject

Atmospheric Science

Reference37 articles.

1. Influence of Advective Energy on Transpiration 1

2. Control of inversion height by surface heating

3. Updates on the international land surface interactions with the Atmophere over the Iberian semi‐arid environment (LIAISE) field campaign;Boone A.;GEWEX News,2021

4. Connecting Land–Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19

5. Evapotranspiration over Land from a Boundary-Layer Meteorology Perspective

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3