A novel robust maximum power extraction framework for sustainable PV system using incremental conductance based MRAC technique

Author:

Singh Deepak Kumar1ORCID,Akella Ashok Kumar1,Manna Saibal1ORCID

Affiliation:

1. Department of Electrical Engineering National Institute of Technology Jamshedpur Jharkhand 831014 India

Abstract

AbstractThis study proposes a maximum power point tracking (MPPT) approach with two components: an Incremental Conductance (INC) MPPT for reference voltage regulation and a Model Reference Adaptive Controller (MRAC) for adjusting the duty cycle of the DC‐DC converter switch. A robustness test is performed on the system considering real‐world situations that involve an abrupt change in atmospheric conditions with load uncertainties. The probabilistic load distribution analysis is accomplished through levels of uncertainty (i.e., Probabilistic DOWN and UP) to guarantee the operation of the proposed INC‐MRAC controller while generating unexpected disturbances in the system. Using MATLAB/Simulink, the performances of the novel INC‐MRAC MPPT are comparatively analyzed with PO, INC, VSSPO, and ANN under realistic case studies in seven states. After comparative analysis, it is evident that the proposed MPPT offers less tracking time, i.e., 3.8 ms, to track maximum power point (MPP) with negligible steady‐state oscillation and ripples. It is about 3, 7, 9, and 10 times faster than ANN, VSSPO, INC and PO, respectively. Moreover, the tracking efficiency of the proposed controller is up to 99.63% as well as overall efficiency of the system is more than 98%. The tracking power loss and error rate in finding MPP for the proposed controller is the lowest among all state‐of‐the‐art MPPT approaches. Finally, the effectiveness of the proposed INC‐MRAC approach is experimentally validated by employing a real‐time simulator OPAL‐RT (OP4510). The study helps in environmental protection and participation in sustainable development.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3