Intelligent classification of cardiotocography based on a support vector machine and convolutional neural network: Multiscene research

Author:

Zhang Wen1,Tang Zixiang2,Shao Huikai3,Sun Chao1,He Xin1,Zhang Jiahui1,Wang Tiantian1,Yang Xiaowei1,Wang Yiran1,Bin Yadi1,Zhao Lanbo1,Zhang Siyi1,Liang Dongxin1,Wang Jianliu4,Zhong Dexing35,Li Qiling1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China

2. Wuhan Second Ship Design and Research Institute Wuhan Hubei China

3. School of Automation Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi China

4. Department of Obstetrics and Gynecology Peking University People's Hospital Beijing China

5. Pazhou Lab Guangzhou China

Abstract

AbstractObjectiveTo propose a computerized system utilizing multiscene analysis based on a support vector machine (SVM) and convolutional neural network (CNN) to assess cardiotocography (CTG) intelligently.MethodsWe retrospectively collected 2542 CTG records of singleton pregnancies delivered at the maternity ward of the First Affiliated Hospital of Xi'an Jiaotong University from October 10, 2020, to August 7, 2021. CTG records were divided into five categories (baseline, variability, acceleration, deceleration, and normality). Apart from the category of normality, the other four different categories of abnormal data correspond to four scenes. Each scene was divided into training and testing sets at 9:1 or 7:3. We used three computer algorithms (dynamic threshold, SVM, and CNN) to learn and optimize the system. Accuracy, sensitivity, and specificity were performed to evaluate performance.ResultsThe global accuracy, sensitivity, and specificity of the system were 93.88%, 93.06%, and 94.33%, respectively. In acceleration and deceleration scenes, when the convolution kernel was 3, the test data set reached the highest performance.ConclusionThe multiscene research model using SVM and CNN is a potential effective tool to assist obstetricians in classifying CTG intelligently.

Publisher

Wiley

Subject

Obstetrics and Gynecology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3