Affiliation:
1. Department of Obstetrics and Gynecology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
2. Wuhan Second Ship Design and Research Institute Wuhan Hubei China
3. School of Automation Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi China
4. Department of Obstetrics and Gynecology Peking University People's Hospital Beijing China
5. Pazhou Lab Guangzhou China
Abstract
AbstractObjectiveTo propose a computerized system utilizing multiscene analysis based on a support vector machine (SVM) and convolutional neural network (CNN) to assess cardiotocography (CTG) intelligently.MethodsWe retrospectively collected 2542 CTG records of singleton pregnancies delivered at the maternity ward of the First Affiliated Hospital of Xi'an Jiaotong University from October 10, 2020, to August 7, 2021. CTG records were divided into five categories (baseline, variability, acceleration, deceleration, and normality). Apart from the category of normality, the other four different categories of abnormal data correspond to four scenes. Each scene was divided into training and testing sets at 9:1 or 7:3. We used three computer algorithms (dynamic threshold, SVM, and CNN) to learn and optimize the system. Accuracy, sensitivity, and specificity were performed to evaluate performance.ResultsThe global accuracy, sensitivity, and specificity of the system were 93.88%, 93.06%, and 94.33%, respectively. In acceleration and deceleration scenes, when the convolution kernel was 3, the test data set reached the highest performance.ConclusionThe multiscene research model using SVM and CNN is a potential effective tool to assist obstetricians in classifying CTG intelligently.
Subject
Obstetrics and Gynecology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献