Convergence analysis of a block preconditioned steepest descent eigensolver with implicit deflation

Author:

Zhou Ming1ORCID,Bai Zhaojun2,Cai Yunfeng3,Neymeyr Klaus1

Affiliation:

1. Department of Mathematics University of Rostock Rostock Mecklenburg‐Vorpommern Germany

2. Department of Computer Science and Department of Mathematics University of California, Davis Davis California USA

3. Cognitive Computing Lab Baidu Research Beijing China

Abstract

AbstractGradient‐type iterative methods for solving Hermitian eigenvalue problems can be accelerated by using preconditioning and deflation techniques. A preconditioned steepest descent iteration with implicit deflation (PSD‐id) is one of such methods. The convergence behavior of the PSD‐id is recently investigated based on the pioneering work of Samokish on the preconditioned steepest descent method (PSD). The resulting non‐asymptotic estimates indicate a superlinear convergence of the PSD‐id under strong assumptions on the initial guess. The present paper utilizes an alternative convergence analysis of the PSD by Neymeyr under much weaker assumptions. We embed Neymeyr's approach into the analysis of the PSD‐id using a restricted formulation of the PSD‐id. More importantly, we extend the new convergence analysis of the PSD‐id to a practically preferred block version of the PSD‐id, or BPSD‐id, and show the cluster robustness of the BPSD‐id. Numerical examples are provided to validate the theoretical estimates.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation of Sri Lanka

Publisher

Wiley

Subject

Applied Mathematics,Algebra and Number Theory

Reference18 articles.

1. The steepest descent method for an eigenvalue problem with semi‐bounded operators;Samokish BA;Izv Vyssh Uchebn Zaved Mat,1958

2. A subspace preconditioning algorithm for eigenvector/eigenvalue computation

3. Cluster robustness of preconditioned gradient subspace iteration eigensolvers

4. Convergence Analysis of a Locally Accelerated Preconditioned Steepest Descent Method for Hermitian-Definite Generalized Eigenvalue Problems

5. Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method;Knyazev AV;Electron Trans Numer Anal.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3