Impact of glycan nature on structure and viscoelastic properties of glycopeptide hydrogels

Author:

Proksch Jonas1ORCID,Dal Colle Marlene C. S.12,Heinz Frederick1,Schmidt Robert F.3,Gottwald Jacqueline4,Delbianco Martina2,Keller Bettina G.3,Gradzielski Michael3,Alexiev Ulrike4,Koksch Beate1ORCID

Affiliation:

1. Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany

2. Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Potsdam Germany

3. Stranski‐Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie Technische Universität Berlin Berlin Germany

4. Department of Physics Freie Universität Berlin Berlin Germany

Abstract

Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, glycoproteins of up to 20 MDa and carbohydrate content of up to 80 wt%. Here, we designed and explored a library of glycosylated peptides to deconstruct the complexity of mucus. Using the well‐characterized hFF03 coiled‐coil system as a hydrogel‐forming peptide scaffold, we systematically probed the contribution of single glycans to the secondary structure as well as the formation and viscoelastic properties of the resulting hydrogels. We show that glycan‐decoration does not affect α‐helix and coiled‐coil formation while it alters gel stiffness. By using oscillatory macrorheology, dynamic light scattering microrheology, and fluorescence lifetime‐based nanorheology, we characterized the glycopeptide materials over several length scales. Molecular simulations revealed that the glycosylated linker may extend into the solvent, but more frequently interacts with the peptide, thereby likely modifying the stability of the self‐assembled fibers. This systematic study highlights the interplay between glycan structure and hydrogel properties and may guide the development of synthetic mucus mimetics.

Funder

Deutsche Forschungsgemeinschaft

Freie Universität Berlin

Max-Planck-Gesellschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3