Affiliation:
1. Department of Physics IIEST Shibpur Howrah India
Abstract
AbstractThis article introduces a ternary nanocomposite‐based flexible thin film ammonia sensor developed on transparent polyethylene terephthalate (PET) substrate in the well‐known in situ chemical oxidative polymerization technique. The nanocomposite consists of three different materials: polyaniline (PANI), reduced graphene oxide (rGO), and zinc ferrite (ZF). Keeping the PANI amount constant, seven PANI/rGO/ZF (PRZ) samples are produced by performing stoichiometric variation between rGO and ZF. Later on, various structural, morphological, and spectroscopic analysis of all the composite materials is accomplished with field emission scanning electron microscopy (FESEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectroscopy (UV–Vis). The sensing performance of the as‐produced sensors toward ammonia (NH3) is examined in the concentration range from 250 ppb to 100 ppm. The study reveals the excellent sensing ability of the PRZ3 sensor (rGO = 30%, ZF = 20%) achieving minimum and maximum responsivity values of ~51% and ~1052%, respectively, at the lowest (250 ppb) and highest (100 ppm) concentration of ammonia. The sensor also exhibits admirable repeatability, good dynamic responsivity, rapid response (tres ~2.9–5 s), moderately faster recovery (trec ~37.9–69.7 s), superb linearity against ppm variation (R2 ~ 0.989), low detection limit (~123 ppb), and exceptional selectivity toward ammonia. The substrate temperature variation divulges that room temperature (30°C) is the ideal temperature for getting outstanding responsivity of the sensor. The study is further accompanied by humidity variation in the incoming air and bending flexibility test of the substrate. A compulsory and legitimate model regarding the sensing mechanism is presented at the end.
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献