A magnetic nanocomposite combined with cinnamic acid for capture–inhibition–separation of Aspergillus fumigatus

Author:

Song Zihan1ORCID,Zhang Yanli1,Ti Yongrui1,Qiao Huitian1,Niu Chen2,Ban Yuqian1,Wang Xiaoxiao1,Hou Yuqing1,Lu Ruiwen1,Song Zihan1

Affiliation:

1. Research Group of Postharvest Technology, State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China

2. Healthy food personalized manufacturing and food safety control, College of Food Science & Engineering Northwest University Xi'an Shaanxi China

Abstract

AbstractTo prevent the generation of drug‐resistant fungi from long‐term exposure to microorganisms, cinnamic acid (CA), a natural effective antifungal agent, was successfully coupled with poly‐dopamine magnetic nanoparticles (CA–DMPs). Due to the low solubility of CA, the saturated solution of CA (1.61 mg/mL, 45°C) had no antifungal effect. Contrarily, CA–DMPs showed a good antifungal effect. The resulting heat‐stable and reusable antifungal CA–DMP composite particles were superparamagnetic (49.79 emu g−1) and had an average diameter of 25.01 ± 1.36 nm. The novel composites showed good antifungal activity and excellent recycling performance, the sterilization rate of CA–DMPs remained above 96% after seven consecutive running cycles. CA–DMP composites could damage the fungal cell wall and membrane system, leading to the leakage of cell inclusions. Furthermore, transcriptome analysis of Aspergillus fumigatus treated with composites showed that 466 differentially expressed genes were primarily associated with cell wall membrane, membrane transporters, energy metabolism, genetic expression, and oxidation–reduction. The effect of CA–DMPs in inducing mitochondrial membrane dysfunction might result in the disruption of energy metabolism and REDOX homeostasis. Overall, the results reported herein provide new insight into the potential antifungal nanomaterials. In vitro antifungal experiments performed on cherry tomatoes confirm the application potential of the synthesized material in the field of fruit and vegetable preservation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Provincial Department of Education

Publisher

Wiley

Subject

Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3