Development and Validation of Predictive Quantitative Structure–Activity Relationship Models for Estrogenic Activities of Hydroxylated Polychlorinated Biphenyls

Author:

Akinola Lukman K.12ORCID,Uzairu Adamu1,Shallangwa Gideon A.1ORCID,Abechi Stephen E.1

Affiliation:

1. Department of Chemistry Ahmadu Bello University Zaria Nigeria

2. Department of Chemistry Bauchi State University Gadau Nigeria

Abstract

AbstractDisruption of the endocrine system by hydroxylated polychlorinated biphenyls (OH‐PCBs) is hypothesized, among other potential mechanisms, to be mediated via nuclear receptor binding. Due to the high cost and lengthy time required to produce high‐quality experimental data, empirical data to support the nuclear receptor binding hypothesis are in short supply. In the present study, two quantitative structure–activity relationship models were developed for predicting the estrogenic activities of OH‐PCBs. Findings revealed that model I (for the estrogen receptor α dataset) contained five two‐dimensional (2D) descriptors belonging to the classes autocorrelation, Burden modified eigenvalues, chi path, and atom type electrotopological state, whereas model II (for the estrogen receptor β dataset) contained three 2D and three 3D descriptors belonging to the classes autocorrelation, atom type electrotopological state, and Radial Distribution Function descriptors. The internal and external validation metrics reported for models I and II indicate that both models are robust, reliable, and suitable for predicting the estrogenic activities of untested OH‐PCB congeners. Environ Toxicol Chem 2023;42:823–834. © 2023 SETAC

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estrogens V: Xenoestrogens;Encyclopedia of Toxicology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3