Affiliation:
1. School of Metallurgical and Ecological Engineering University of Science and Technology Beijing Beijing China
2. Beijing Key Laboratory of Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering Peking University Beijing China
Abstract
AbstractRecently, two‐dimensional transition metal dichalcogenides (TMDs) demonstrated their great potential as cost‐effective catalysts in hydrogen evolution reaction. Herein, we systematically summarize the existing defect engineering strategies, including intrinsic defects (atomic vacancy and active edges) and extrinsic defects (metal doping, nonmetal doping, and hybrid doping), which have been utilized to obtain advanced TMD‐based electrocatalysts. Based on theoretical simulations and experimental results, the electronic structure, intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed. Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties. Furthermore, current opportunities and challenges for mechanical investigations and applications of defective TMD‐based catalysts are presented. The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high‐efficiency TMD‐based electrocatalysts.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献