Defect‐engineered two‐dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction

Author:

Su Hang1,Pan Xiaodong1,Li Suqin1,Zhang Hao1,Zou Ruqiang2ORCID

Affiliation:

1. School of Metallurgical and Ecological Engineering University of Science and Technology Beijing Beijing China

2. Beijing Key Laboratory of Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering Peking University Beijing China

Abstract

AbstractRecently, two‐dimensional transition metal dichalcogenides (TMDs) demonstrated their great potential as cost‐effective catalysts in hydrogen evolution reaction. Herein, we systematically summarize the existing defect engineering strategies, including intrinsic defects (atomic vacancy and active edges) and extrinsic defects (metal doping, nonmetal doping, and hybrid doping), which have been utilized to obtain advanced TMD‐based electrocatalysts. Based on theoretical simulations and experimental results, the electronic structure, intermediate adsorption/desorption energies and possible catalytic mechanisms are thoroughly discussed. Particular emphasis is given to the intrinsic relationship between various types of defects and electrocatalytic properties. Furthermore, current opportunities and challenges for mechanical investigations and applications of defective TMD‐based catalysts are presented. The aim herein is to reveal the respective properties of various defective TMD catalysts and provide valuable insights for fabricating high‐efficiency TMD‐based electrocatalysts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3