Zwitterionic ZnO nanoparticles: Novel additives to synthesize high performance and fouling resistance thin‐film nanocomposite forward osmosis membrane

Author:

Shirazi Sadaf1,Shakeri Alireza1ORCID,Bonsale Rozgol2,Razavi Reza1,Salehi Hasan1

Affiliation:

1. School of Chemistry, College of Science University of Tehran Tehran Iran

2. Department of Polymer Engineering, Faculty of Engineering Golestan University Gorgan Iran

Abstract

AbstractMeeting the ever‐increasing need for clean water requires developing highly effective thin‐film nanocomposite (TFN) membranes with outstanding water permeability, selectivity, and good fouling resistance. In this work, ZnO nanoparticles were synthesized and coated with zwitterionic lysine amino acid (ZnO‐lysine) and then incorporated into a polyamide layer to improve their performance as well as to alleviate fouling. The organic shell on the ZnO‐lysine surface promoted the PA layer's interaction with ZnO‐lysine nanoparticles. TFN membranes demonstrated hydrophilic and smooth polyamide layers with improved permeability and selectivity. In particular, the TFN membranes' enhanced hydrophilicity and smooth surface synergized fouling reduction. In comparison to the bare TFC membrane (12.2 LMH) using 1 M NaCl as the draw solution, the ZnO‐lysine‐modified TFN‐ZL.400 membrane (21.1 LMH) yields a water flux that is 75% greater. In the polyamide layer, the zwitterionic functional groups of ZnO‐lysine not only improved the nanoparticles' chemical compatibility, preventing the creation of nonselective gaps, but also enhanced water flux and salt rejection. This study provides insight into the creation of zwitterionic‐functionalized nanoparticles that can successfully address fouling issues and trade‐off restrictions between selectivity and permeability in TFN membranes.

Funder

University of Tehran

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3