Compounding effects of human activities and climatic changes on the river water temperature evolution mechanism for ecological effects

Author:

He Ning1ORCID,Guo Wenxian1,Jiao Xuyang1,Wang Hongxiang1

Affiliation:

1. School of Water Conservancy North China University of Water Resources and Electric Power Zhengzhou China

Abstract

AbstractUnderstanding the drivers and ecological effects of river water temperature (Tw) change remains a complex and challenging task in the field of ecohydrology. We developed the extreme‐point symmetric mode decomposition to quantitatively identify the trend, period and mutation of water temperature (Tw). The sparrow search algorithm‐long short‐term memory model was constructed to reconstruct the historical Tw to quantitatively identify the effects of human activities (HA) and climate change (CC) at different time scales. The random forest method was used to analyse the contribution rates of different meteorological factors and to clarify the main factors. Our results demonstrate that the Tw had a cooling trend in the 1980s, and the other decades have a warming trend, and the annual Tw distribution shows an obvious ‘unimodal’ distribution. The interannual Tw has a short period of 2–3a, 6–12a and a long period of 10–15a. At the interannual scale, as the distance from estuaries decreases, the influence of HA gradually diminishes, and only the great Tw is governed by CC. Contributions from HA and CC to Tw vary at the seasonal and monthly scales due to geographical differences. In Cuntan, the contribution of HA to Tw is greater than that of climatic factors. The contribution rates of climatic and HA in the three regions of Yichang, Hankou and Datong also exhibit their respective characteristics and fluctuation patterns. The maximum temperature is the most important factor affecting the change of Tw. Abnormal Tw changes result in delayed spawning and characteristic reproduction Tw attainment dates for the Four Major Chinese Carps and Acipenser sinensis.

Funder

Major Scientific and Technological Special Project of Guizhou Province

Science and Technology Innovation Talents in Universities of Henan Province

Henan Province Science and Technology Innovation Talent Program

North China University of Water Resources and Electric Power

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3