Affiliation:
1. Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
Abstract
AbstractApurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and “interactomes” of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio‐nanocomposite with antibody‐like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin‐modified surface of silica‐coated magnetic nanoparticles, we first added 3‐aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2‐acrylamido‐2‐methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly (ethylene glycol) amine (mPEG‐NH2). The resulting molecularly imprinted polymer‐based bio‐nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio‐nanocomposite with high activity. The bio‐nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.
Funder
National Natural Science Foundation of China
Subject
Organic Chemistry,Biomaterials,Biochemistry,General Medicine,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献