Carbon‐13 chemical shift tensor measurements for nitrogen‐dense compounds

Author:

Holmes Sean T.12,Boley Cameron M.3,Dewicki Angelika3,Gardner Zachary T.3,Vojvodin Cameron S.12,Iuliucci Robbie J.3,Schurko Robert W.12ORCID

Affiliation:

1. Department of Chemistry & Biochemistry Florida State University Tallahassee Florida USA

2. National High Magnetic Field Laboratory Tallahassee Florida USA

3. Department of Chemistry Washington and Jefferson College Washington Pennsylvania USA

Abstract

AbstractThis paper reports the principal values of the 13C chemical shift tensors for five nitrogen‐dense compounds (i.e., cytosine, uracil, imidazole, guanidine hydrochloride, and aminoguanidine hydrochloride). Although these are all fundamentally important compounds, the majority do not have 13C chemical shift tensors reported in the literature. The chemical shift tensors are obtained from 1H→13C cross‐polarization magic‐angle spinning (CP/MAS) experiments that were conducted at a high field of 18.8 T to suppress the effects of 14N‐13C residual dipolar coupling. Quantum chemical calculations using density functional theory are used to obtain the 13C magnetic shielding tensors for these compounds. The best agreement with experiment arises from calculations using the hybrid functional PBE0 or the double‐hybrid functional PBE0‐DH, along with the triple‐zeta basis sets TZ2P or pc‐3, respectively, and intermolecular effects modeled using large clusters of molecules with electrostatic embedding through the COSMO approach. These measurements are part of an ongoing effort to expand the catalog of accurate 13C chemical shift tensor measurements, with the aim of creating a database that may be useful for benchmarking the accuracy of quantum chemical calculations, developing nuclear magnetic resonance (NMR) crystallography protocols, or aiding in applications involving machine learning or data mining. This work was conducted at the National High Magnetic Field Laboratory as part of a 2‐week school for introducing undergraduate students to practical laboratory experience that will prepare them for scientific careers or postgraduate studies.

Funder

Florida State University

National High Magnetic Field Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3