Analysing the spatiotemporal variation and influencing factors of Lake Chaohu's CDOM over the past 40 years using machine learning

Author:

Zhang Zijie1,Zhang Han1,Jin Yifan1,Guo Hongwei1,Tian Shang1,Huang Jinhui Jeanne1,Zhu Xiaotong1

Affiliation:

1. College of Environmental Science and Engineering/Sino‐Canada Joint R&D Centre for Water and Environmental Safety Nankai University Tianjin China

Abstract

AbstractChromophoric dissolved organic matter (CDOM) in aquatic environments is an important component of the biogeochemical cycle and carbon cycle. The aim of this study is to investigate the long‐term changes in CDOM in shallow and eutrophic Chaohu Lake, as well as its relationship with climate, environment and social factors. Using long time series Landsat image data and machine learning technology, the spatiotemporal evolution of Chaohu CDOM since 1987 was reconstructed. A total of 180 samples were collected, which were divided into three parts based on regional and hydrological characteristics. The results show that the water quality in different regions were significantly different, and TN may be the key factor driving the change of CDOM in Chaohu Lake. Machine learning algorithms including random forest (RF), support vector regression (SVR), neural network (NN), multimodal deep learning (MDL) model and Extreme Gradient Boosting (XGBoost) were used, among which XGBoost model performed best (R2 = 0.955, mean absolute error [MAE] = 0.024 mg/L, root mean square error [RMSE] = 0.036 mg/L, bias = 1.005) and was used for CDOM spatiotemporal variation retrieval. The change of CDOM was seasonal, highest in August (0.67 m−1) and lowest in December (0.48 m−1), and the western lake is the main source of CDOM. Annual variability of the CDOM indicates that it began to decline after the completion of water pollution control in 2000. Temperature changes were closely related to CDOM (P < 0.01) and agricultural non‐point source pollution plays an important role in Chaohu Lake. This study will provide feasible methods and scientific basis for the long‐term remote sensing supervision of CDOM.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3